
SYNTHBOT:
AN UNSUPERVISED SOFTWARE SYNTHESIZER PROGRAMMER

Matthew Yee-King
Informatics

University of Sussex

Martin Roth
mhroth@gmail.com

ABSTRACT

This work presents a software synthesizer programmer,
SynthBot, which is able to automatically find the settings
necessary to produce a sound similar to a given target.
As modern synthesizers become more capable and the un-
derlying synthesis architectures more obscure, the task of
programming them to produce a desired sound becomes
more time consuming and complex. SynthBot is presented
as an automated solution to this problem. A stochastic
search algorithm, in this case a genetic algorithm, is used
to find the parameters which produce the most similar
sound to the target. Similarity is measured by the sum
squared error between the Mel Frequency Cepstrum Co-
efficients (MFCCs) of the target and candidate sounds.

The system is evaluated technically to establish its abil-
ity to effectively search the space of possible parameter
settings. A pilot study is then described where musicians
compete with SynthBot to see who is the most competent
synthesizer programmer, where each competitor rates the
other using their own metrics of sound similarity. The out-
come of these tests suggest that the system is an effective
”composer’s assistant”.

1. INTRODUCTION

As the performance of general purpose computer hard-
ware continues to improve, there is also an associated in-
crease in the complexity of software synthesizers. For
example, the current version of Native Instruments’ FM8
synthesizer has 1093 parameters [8]. Even with an opti-
mised user interface, creating sounds that are more than
mild adjustments of the presets can be a challenge. In
this paper we presentSynthBot, a system which is capable
of automatically programming any VSTi compatible soft-
ware synthesizer in order to produce a sound as close as
possible to a target sound supplied by the user.

SynthBot uses a genetic algorithm to search the space
of possible parameter settings for any given VST synthe-
sizer plugin [12], guided by a fitness function which com-
pares Mel Frequency Cepstrum Coefficients (MFCC) [5]
features of the target sound and the candidate sounds gen-
erated by the plugin using these parameter settings. As
the candidate parameters evolve, the corresponding syn-
thesized sounds move closer to the target sound and the
feature vector error is reduced. When the system finds pa-
rameter settings which produce a sound that satisfies the

user, this sound can be saved as a preset which is available
to any other VSTi host software. The user is able to sim-
ply produce completely new programmes for any VSTi
synthesizer, tailored to their own specification.

SynthBot is implemented as a cross-platform Java ap-
plication which uses the Java Native Interface (JNI) to
provide a host for the VST plugins and for optimised fea-
ture extraction. The system has so far been tested on the
Mac OS X and GNU/ Linux platforms. The Java language
was chosen to allow rapid cross platform development, es-
pecially for GUI and threading functionality.

At the time of writing, there is not a single compara-
ble general purpose, interoperable, and unsupervised syn-
thesizer programmer system available. However, the key
techniques - timbre similarity measurement using MFCC
features and non-linear parameter optimisation using a ge-
netic algorithm are well established.

In the remainder of this paper, related research is dis-
cussed, the technical implementation is described, a tech-
nical evaluation is presented along with the initial results
of a pilot user evaluation, and finally there is a conclusion
and discussion of future plans.

1.1. Related work

There has been a steady interest in the application of un-
supervised genetic algorithms to the problem of automatic
synthesizer programming. An early example is [7], where
tone matching is achieved using FM synthesis and a ge-
netic algorithm. FM synthesis combined with GA pro-
grammers appears repeatedly in the literature (e.g. [16, 1,
14], but other synthesis algorithms have been tried, e.g.
noise band synthesis [4] and subtractive synthesis [15].

A key question in all these systems is how to judge
sound similarity. Most opt for an error measure obtained
by comparing the power spectra of the candidate and tar-
get sounds, an approach which does indeed reward sim-
ilar sounds. One problem with the power spectrum is
its brittleness - if the same instrument plays two differ-
ently pitched notes, there will be a large error between the
power spectra even if the notes could clearly be identified
by a human user as having been played using the same
instrument - human perception must be considered. This
is addressed in some of the research, where perceptually
informed measures such as the spectral centroid are used
(e.g. [16]).



Another key question is how to make these systems us-
able for musicians. With the exception of [4], the soft-
ware described in the literature is not publicly available.
Where it is available, it does not interoperate with other
music software in a way that is appealing to musicians,
for example using MIDI or OSC. There is one commer-
cially available system - the Nord Modular G2 patch mu-
tator [10], but this is an interactive GA where the fitness
measure is dictated by the user.

In the present work, both of these questions are ad-
dressed. Firstly, Mel Frequency Cepstrum Coefficients
are used as audio feature vectors, forming the core of the
fitness function. The MFCC is considered a suitable mea-
sure as it is pitch independent and based on a perceptual
model. It is well established in speech recognition [5] and
more recently it has been used as a measure of musical
similarity [2]. Secondly, a DSP plug-in architecture famil-
iar to many musicians, Steinberg’s VST is used to allow
our system to access any VSTi compatible synthesizer for
the synthesis engine.

The computer music software that has been developed
falls in the category of “composer’s assistant”.

2. IMPLEMENTATION

2.1. Overview

SynthBot is an unsupervised programmer for software syn-
thesizers. It takes as input a target sound file and a soft-
ware synthesizer, and returns the set of parameters for the
synthesizer which produce as similar a sound to the tar-
get as possible. MFCCs are used to evaluate sounds simi-
larly to the human ear, and the inverse sum squared error
between the target and candidate MFCCs is used to de-
termine the candidate fitness. The application is primarily
implemented in the Java programming language, allowing
for rapid prototyping and simple GUI development.

The first incarnation of SynthBot works only with VSTi
software synthesizers. VSTi plug-ins are written in C++
and compiled natively. They are represented as bundles in
Mac OS X, dynamically linked libraries (DLLs) in Win-
dows, and shared objects (SOs) in UNIX/Linux. The Syn-
thBot interface for VSTi plug-ins is thus necessarily also
written in C++, as the software synthesizer libraries are
only available in that language. A Java Native Interface
(JNI) wrapper exposes native VSTi functionality to Java
and to the bulk of the SynthBot logic. In this way, Synth-
Bot acts as a VST host, able to control and communicate
with VST synthesizers. There are no other known Java-
based VST host.

The MFCCs are computed using a custom library called
BoomMFCC, which is also a native library written in the
C programming language and made available to SynthBot
via a JNI interface wherein the FFTW library [6] is used
to compute discrete fourier transforms. BoomMFCC is
optimized for computing MFCCs in multithreaded envi-
ronments allowing SynthBot to improve performance on
modern multicore processors. BoomMFCC was devel-
oped following the trial of available MFCC libraries such

COMIRVA [11] and LibXtract [3]. The use of BoomM-
FCC allows increased performance of almost two orders
of magnitude over the latter packages. Over the course of
development and testing various methods, MFCC compu-
tation times were reduced from about 250 milliseconds to
roughly 5ms on a modern machine. Performance figures
depend heavily on MFCC parameters and implementation
details.

2.2. Sound Synthesis

Since the system is compatible with any VSTi plug-in, it
is capable of working with any sound synthesis algorithm
available in this plugin format. In the evaluations pre-
sented here, the freely available mda synthesizer plug-ins
mdaDX10 andmdaJX10 [9] were used. The mdaDX10 is
a single modulator FM synthesizer with 16 paramters and
the mdaJX10 is a subtrative synthesizer with 2 tuned and
one noise oscillator and 40 parameters.

2.3. Parameter Search

In the VSTi standard, each synthesizer parameter is rep-
resented as a real number (afloat) between zero and
one, inclusive. Modern synthesizers may have hundreds
of parameters, making the search space high dimensional.
Even basic characteristics of search space, such as conti-
nuity or variance, are unknown. A stochastic search al-
gorithm is used in order to effectively search for the best
parameters. In the present case, this is a genetic algorithm
(GA), though others are possible, such as particle swarm
optimization (PSO) or simulated annealing (SA).

The GA population begins in a random state. Each in-
dividual of the population is represented as an array with
length equal to the number of parameters of the synthe-
sizer. Individuals are assessed by loading their parame-
ters into the synthesizer and generating a candidate sound
with the same length as the target by passing a fixed MIDI
note on message into the synthesizer. The MFCCs of the
candidate are computed and the reciprocal of the square
distance (sum squared error) to the target MFCCs is used
to characterize its fitness. A fitness based proportional
roulette wheel as described in [13] is generated and used
to select the individuals who will be able to contribute to
the next generation. Fitter individuals are more likely to
contribute. Crossover occures between each pair of cho-
sen individuals by exchanging subarrays at a uniformly
randomly chosen crossover point. Each parameter of the
resultant arrays are then mutated by adding a gaussian ran-
dom variable with zero mean and variance of 0.05. As
parameters are constrained to between zero and one, such
a mutation will be minor most of the time, and naturally
allowing for larger and rarer deviations.

3. EVALUATION

SynthBot has been evaluated in two ways. Firstly, is has
been evaluated technically to assess its search behaviour



Figure 1. This graph shows fitness against time for 100
runs of the GA.

and performance. Secondly, a pilot study has been carried
out to ascertain the usefulness of the system to musicians.

3.1. Technical evaluation

To assess an individual, the plug-in is configured with pa-
rameter settings, its output is rendered to a buffer, MFCCs
are extracted and the error is calculated. With a window
length of 25 milliseconds (ms), an inter-window length of
10ms, 50 mel filter banks and a 1s long sound, this takes
around 5 ms on a dual-core 2.2Ghz x86 machine.

In order to establish that the system is capable of effec-
tively searching the space of possible parameter settings,
the following process was carried out 100 times:

1. A target audio file is rendered using the mdaJX10
synthesizer with random parameter settings.

2. The optimiser runs for 100 generations with a popu-
lation size of 100. This takes approximately 3 min-
utes.

3. Back to 1.

The results of the runs are presented in Figure 3.1. The
fitness achieved at the end of the runs has a large vari-
ance. This suggests that sometimes a low error is achieved
and sometimes a higher error. But what does this mean in
terms of the quality of the sound matching? Figure 3.1
shows 4 comparisons between evolved and target specra.
The spectra are ranked by the measured MFCC error, where
’a’ has the highest error, ’b’ has the 33rd highest error, ’c’
the 66th and ’d’ the lowest error. The variance level in-
dicates that ’b’ or ’c’ can be expected from a typical run.
’b’ and ’c’ clearly have spectra which are very close to
their targets. Note that the improvement in fitness begins
to level off around thirty iterations of the GA, which is
only one minute of computation time.

To establish if the system is capable of matching a real
instrument timbre is more of a challenge as it was soon
observed that the spectra of evolved and target sounds did
not look anywhere near as similar as the test sounds from
above, even when the perceived similarity was quite com-
peling.

Figure 2. This image shows spectrograms of the worst(a),
66th best(b), 33rd best(c), and best(d) results from the
technical evaluation. The target spectrum is shown next
to the candidate spectrum for each run.

3.2. Experimental evaluation

Objective error measures are not sufficient to rate the use-
fulness of the system when evolving towards real sounds.
A subjective evaluation is conducted using a two phase ex-
periment in which the performance of expert human users
is compared to that of SynthBot. In phase one, ten expert
human users are asked to programme two sounds on the
mdaJX10 and mdaDX10 synthesizers using a generic in-
terface as shown in Figure 3.2. For each synthesizer the
targets are a real instrument sound and a pitched sound
made using that synthesizer. The real instrument sounds
cannot be exactly reproduced using the synthesizers but
the synthesized sounds can be. SynthBot is given the same
task and this results in a total of 44 sounds. In phase two
an online evaluation is carried out where users rate each
of the 44 sounds for similarity to their respective target
sounds. SynthBot then rates the sounds using its MFCC
error metric. Finally correlations are sought between the
similarity ratings of the human users and those of Synth-
Bot. This experiment should establish the quality of Syn-
thBot’s programming performance as well as the useful-
ness of the MFCC error metric for instrument sounds. At
this stage, phase one is complete and phase two is on-
going.

Initial results indicate that SynthBot achieves an MFCC
error which is an order of magnitude smaller than the hu-
man, in about half of the time. The qualitative feedback
has been encouraging - the subjects would certainly use
such a tool, they say, and would like to see how it per-
forms with their own VSTi plug-ins.

4. CONCLUSION

An automatic software synthesizer programmer,Synth-
Bot, has been presented. It is capable of loading any VSTi



Figure 3. The interface used to carry out the musician
tests, showing the paramters for the mdaDX10 synthesizer

compatible software synthesiser and finding the parame-
ters which cause it to produce a sound closest to a given
target. Sound similarity is measured according to squared
distance between candidate and target MFCCs, and can-
didate optimisation is accompished using a genetic algo-
rithm. SynthBot is a composer’s assistant intended to save
time and effort, as the synthesiser architectures become
more complex and the knowledge necessary to program
them in a meaningful way becomes more arcane. The sys-
tem is evaluated according to technical and experimental
means. The former shows how the spectrum of the candi-
date sound evolves to meet that of the target, usually in a
matter of minutes. The latter pits SynthBot against musi-
cians and the preliminary results indicate that the program
outperforms even experienced synthesiser programmers.

Future Work

There are many directions for future work. This includes
improved software synthesiser plugin support, not only
for more advanced VSTs, but other common interfaces
such as AudioUnits or Linux Audio Developer’s Simple
Plugin API (LADSPA). Further improvements in target
sound acquisition are also necessary, possibly through the
use of a better tuned GA or another stochastic search al-
gorithm such as Particle Swarm Optimisation (PSO). Im-
provements in fitness function are also envisioned. This
includes not only optimised computation of MFCCs, but
also other better tuned metrics.

Acknowledgments

The authors would like to thank the musicians who were
invaluable in conducting the experimental evaluation.

5. REFERENCES

[1] L.J.S.M. Alberts. Sound reproduction using evolu-
tionary methods: A comparison of fm models. Web-
site, 2005.

[2] Franois Aucouturier, Jean-Julien ; Pachet. Tools and
architecture for the evaluation of similarity measures

: Case study of timbre similarity. InProceedings of
ISMIR Conference 2004, 2004.

[3] Jamie Bullock. Libxtract: A lightweight library
for audio feature extraction. InProceedings of the
ICMC 2007 International Computer Music Confer-
ence, 2007.

[4] Michael Chinen and Naotoshi Osaka. Genesynth:
Noise band-based genetic algorithm analy-
sis/synthesis framework. InProceedings of the
ICMC 2007 International Computer Music Confer-
ence, 2007.

[5] Mermelstein P. Davis, S.B. Comparison of para-
metric representations for monosyllabic word recog-
nition in continuously spoken sentences. InEEE
Trans. on Acoustic, Speech and Signal, pages 357–
366, 1980.

[6] Matteo Frigo and Steven G. Johnson. The design
and implementation of FFTW3.Proceedings of the
IEEE, 93(2):216–231, 2005. special issue on ”Pro-
gram Generation, Optimization, and Platform Adap-
tation”.

[7] A Horner, J Beauchamp, and L Haken. Genetic Al-
gorithms and Their Application to FM, Matching
Synthesis. Computer Music Journal, 17(4):17–29,
1993.

[8] Native Instruments. Fm8 the power of digital. Web-
site, 2008.

[9] Paul Kellet. mda-vst.com. website, 2008.

[10] Clavia Palle Dahlstedt. Nord modular g2 patch mu-
tator. website, 2006.

[11] Markus Schedl. The CoMIRVA Toolkit for Visual-
izing Music-Related Data. Technical report, Depart-
ment of Computational Perception, Johannes Kepler
University Linz, June 2006.

[12] Steinberg. Vst audio plug-ins sdk 2.4 revision 1.
website, 2008.

[13] Darrell Whitley. A genetic algorithm tutorial.Statis-
tics and Computing, 4:65–85, 1994.

[14] Matthew John Yee-King. An automated music im-
proviser using a genetic algorithm driven synthesis
engine. InEvoWorkshops, volume 4448 ofLec-
ture Notes in Computer Science, pages 567–576.
Springer, 2007.

[15] Matthew John Yee-King. The evolving drum ma-
chine. Music-AL workshop, ECAL conference
2007, 2007.

[16] Der-Tzung Liu Yuyo Lai, Shyh-Kang Jeng and Yo-
Chung Liu. Automated optimization of parameters
for fm sound synthesis with genetic algorithms. In
2006 International Workshop on Computer Music
and Audio Technology, 2006.


